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Objective:

– Examine Feasibility of Existing Power/Energy 

Systems to Meet UUV Requirements

– Describe Desirable System Features

Conclusions:

– Current obvious energy sources don’t satisfy 

Navy UUV requirements.  

– New Storage/Conversion systems and 

concepts are needed.

Outline:

– Mission Definition and System Requirements

– Options Considered 

– Performance Comparisons

TODAY’S DISSCUSION
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2004 UUV MASTER PLAN

Sea Power 21 Sub-Pillar Capabilities

1. Intelligence, Surveillance, Reconnaissance

2. Mine Countermeasures

3. Anti-Submarine Warfare 

4. Inspection / Identification

5. Oceanography

6. Communication / Navigation Network Node

7. Payload Delivery

8. Information Operations

9. Time Critical Strike

www.navy.mil/navydata/technology/uuvmp.pdf
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Case 1: ~80 kWh, 

130 liters, 615 Wh/L

Case 2: ~1800 kWh, 

2000 liters, 900 Wh/L

MISSION PROFILE EXAMPLES

• Total Mission Energy

• Average, Peak, Hotel Power
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• Safety

• Air Independent

• Reliable

• Rapid Start-Up, Shut-Down, Load Follow

• Neutrally Buoyant 

• Low/No Observables (noise, discharges)

• Easy/Rapid/Safe Refueling

• No Hull Penetrations

• Orientation (operation & storage)

DESIRED POWER/ENERGY

SYSTEM FEATURES
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• Cost Effective (Acquisition and Recurring)

• Hibernation Capability

• Long Shelf Life

• Efficient Over a Wide Power Range; Hybrid?

• Scalable (Power Plant, Fuel, Oxidant)

DESIRED POWER/ENERGY

SYSTEM FEATURES, continued
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BATTERIES CANNOT MEET

FUTURE ENERGY GOALS

Range of Interest
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ENERGY CONVERSION TECHNOLOGIES

• FUEL CELLS

• HEAT ENGINES • THERMOELECTRICS

GENERAL MOTORS 93 kW PEM  DELPHI 3 kW SOFC

• HYBRID SYSTEMS• SEMI CELLS

Fuel cell stack

Equinox Gen 5
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• Hydrogen

Gaseous, 5 kpsi and 10+kpsi

Liquid (1 Atm, 20 K)

Supercritical

• Reversible Metal Hydrides

• Chemical Hydrides

Dry Hydrides (thermally or water activated)

Slurry/Dissolved Hydrides

• Reformed Hydrocarbons

Methanol

JP8/Kerosene

Butane/Propane

• Ammonia

FUEL OPTIONS



ENERGY CONTENT OF VARIOUS FUELS

Lower Heating Values (LHVs)
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OXYGEN STORAGE
effective O2 density, g/cm3 of system
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• Multiple fuel/oxidant systems considered

• Each is ~5,000 liters total volume

• All neutrally buoyant

• Not rigorous designs but approximate

SYSTEM STUDIES
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PURE HYDROGEN/OXYGEN

FUEL CELL
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FUEL CELL w/

REVERSIBLE METAL HYDRIDES
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FUEL CELL w/

HYDROCARBON REFORMATE
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FUEL CELL w/

CHEMICAL HYDRIDES
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• Many options to meet goals

• Challenging waste disposal

• Liquids preferred



17

0 1,000 2,000 3,000 4,000 5,000

1

Liters

Typical Volume Distribution

within Power/Energy Hull Section

FUEL OXIDANT

CONVERTER

VOLUME TO ENSURE

NEUTRAL BUOYANCY



DESIGN ELEMENTS TO CONSIDER

Darker Line Denotes Hull

Wetted Fuel/Oxidant Volume External to Hull

Hull Fairing 

Liquid Storage

• Better volumetric storage

• Reduces wall thickness for

highly pressurized systems

• Reduces insulation/boil-off

for cryogenic systems

Use of Inner 

Rib Volume

Volume between pressure 

vessels ribs can be used 

for storage

Tank-in-a-Tank
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Hybrids
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HYBRID POWER SOURCES OFFER

HIGH SPECIFIC ENERGY AND POWER
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CONCLUSIONS

• Discussion was to highlight issues, not advocate a 

specific approach or technology

• Traditional approaches will not meet future Navy goals

• Rankings may change with vehicle 

size/requirements/missions/materials breakthroughs

• Energy conversion efficiency is critical: reactants dwarf 

converter mass and volume

• Thermal management, neutral buoyancy, product 

removal, safety, vehicle turn-around time, and cost must 

be addressed

• Hybrid systems may offer higher system efficiencies 

and better performance
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KEEP IT SIMPLE, GET THE JOB DONE,

INNOVATE

Photo courtesy of Naps Systems

Vaccine Fridge CFS49IS System
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